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Abstract—An approach is presented for scheduling PTZ cam-
eras on guard tours with two or more fields of view. In contrast
to the target tracking of previous work, this approach seeks to
optimise the coverage of the area under surveillance. Specifically,
the aim is to minimise the surprisal (self-information) of events
in unobserved fields of view. An entropy driven scheduler based
on Kullback-Leibler divergence (information gain) is presented,
and compared with three naive schedulers (random, round robin
and constant selection of one field of view).

Experiments investigate its performance on networks of ten
cameras. These are evaluated over factors including four different
scheduling approaches, different numbers of fields of view, and
different inactive times whilst switching views. They demonstrate
the efficacy of the entropy driven scheduler as it outperforms the
naive schedulers by a significant margin by favouring certain
fields of view that are more likely to reveal events with high
surprisal value. The scheduler is target agnostic, as it operates
on low level properties of the video signal, specifically, occupancy
as determined by background subtraction. This permits an
efficient implementation that is independent of the number
of targets in the area under surveillance. As each camera is
scheduled independently, the approach is scalable via distributed
implementation, including on smart cameras.

I. INTRODUCTION

Surveillance cameras with pan-tilt-zoom (PTZ) capability
are increasingly common in modern IP surveillance networks.
They provide a range of useful capabilities, including easy
physical configuration, mobile views and active tracking. Of-
ten, PTZ cameras are configured to multiplex between a small
number of PTZ positions (a“guard tour”). This attempts to
increase the total area observed by each camera, and thus tries
to increase the probability of observing significant or unusual
events. The observation areas or fields of view (FOVs) are
usually selected by security for their ability to provide useful
information, should an event of interest occur. Usually the
selection of changing the active FOV is performed in a fairly
naive manner by switching through one after another of a
series of set positions in the PTZ cameras observable area.
This is usually set on a timer such that each FOV receives the
same period of observation, regardless of whether it is more
or less likely to observe anything of interest.

This paper presents an approach to scheduling PTZ cameras
that increases the likelihood of observing events that or of
interest in the area under surveillance. The focus is taken away
from following and tracking a single object throughout scene,
as such a scenario might be useful for observing a suspect;
however it might miss other activity or events that could be
of more importance whilst following that individual. In the
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approach presented in this paper, events are evaluated in terms
of their surprisal (or self information). The aim is to minimise
the aggregate surprisal of potential observable but unobserved
events. Such events include:

« events occurring in one of the FOVs on a guard tour when
one of the other FOVs is being observed, and

« events occuring when no FOV is being observed due to
the camera being in transit between FOVs.

Through minimising the surprisal of unobserved events, a
scheduling approach increases the coverage of the area ob-
servable by each camera.

This paper presents an entropy driven approach to schedul-
ing the selection of the FOV to observe. This entropy driven
scheduler selects the FOV to observe based on the Kullback-
Leibler divergence (Dk 1, (P||Q)) between measured (P) and
modelled (Q) representations of the likelihood of occupancy
of regions within each of the FOVs observable by a camera.

The entropy driven scheduler is compared to three naive
schedulers (random selection, round robin and constant se-
lection of a single FOV), on a simulated network of ten
PTZ cameras, which allows for a known grown truth to
the data being analysed. Other parameters explored within
the simulation are the number of FOVs per camera, which
range form being two, three, or four, and the time that each
PTZ camera takes to switch between FOVs, which can be
either one or five frames. The evaluation of these simulations
occur over multiple runs, with the demonstrated decrease in
aggregate surprisal of the entropy driven scheduler being the
main contribution of this work.

This paper first explores the previous work in PTZ schedul-
ing. In section III it describes the use of surprisal within
the PTZ camera context and how it can be utilised for FOV
selection. Section IV describes the system model that is used,
including important aspects about how results from this model
are simulated. The various basic scheduling strategies are
described briefly in section V before the entropy scheduler is
detailed in section VI. The results are provided and discussed
in section VII. The paper then describes future expansions of
the work in section VIII before the conclusions are provided.

II. PREVIOUS WORK

A substantial body of recent research has investigated auto-
matic approaches to the control of networks of pan-tilt-zoom
(PTZ) cameras. Many of the initial approaches utilised meth-
ods to calibrate cameras to a common ground plane, though



some more recent approaches have been information-theoretic
in nature. The main focus of the vast majority of this work
has been towards the improved tracking of targets of interest.
A major distinction can be drawn between approaches for
tracking a single target (multi-camera tracking) and tracking
arbitrary numbers of targets (camera assignment). These can
be further distinguished based upon whether the cameras are
scheduled independently or jointly. For those cameras which
are scheduled jointly, there is often a distinguished “super-
visor” camera responsible for directing the other cameras
(sometimes called a “master/slave” arrangement).

Some approaches have focused upon extracting improved
information of a single object using a combination of PTZ and
other cameras [1], though they may also focus on a detailed
view of a region of interest such as the face. Such approaches
can be difficult to generalise to support the tracking multiple
targets, which is often required in surveillance environments.
Other approaches may use explicit calibration such as a
common ground plane in order to assist with coordination of
PTZ cameras [2]. Master slave configurations are also common
[3], though this approach can restrict the full utilisation of the
available cameras to add extra information about the objects
within the scene to the system. Additionally, to maintain the
tight coupling between the master and slave, restrictions on the
movement of the master are also often required. This could
minimise the masters ability to adjust to a better view or
restrict it from being used to obtain detailed object views.
A final concern with this approach is that it assumes that the
master observes the entire area, therefore the system can not
adjust to search areas outside the master camera’s view, even
if the slave cameras may be able to view such areas.

A different approach to the problem can come from an
information theoretic approach. One of the earliest examples
using this for camera control is Denzler et.al. [4]. They adjust
the focal length of a stereo pair of cameras to minimise
uncertainty in estimation of the 3D position of a single target
(object) being tracked. The trade-off is between small focal
length, giving an increased chance that the target is visible
within the field of view, versus large focal length, which
increases accuracy of 3D position estimation for the target, if it
is visible within the field of view. Formulating the problem in
information theoretic terms allows the trade-off to be resolved
without requiring an arbitrary rate of exchange between the
benefits of each side of the trade-off.

Work such as Qureshi and Terzopoulos [5] and Bag-
danov et.al [6] handle the tracking of multiple targets using
multiple cameras; including the possibility that there might be
more targets than cameras. The former treats the scheduling
of cameras to follow target as analogous to routing through
a data network. The latter considers scheduling as a discrete
optimisation problem. In both cases, there is a distinguished
“supervisor” camera responsible for direction of the others,
implying a degree of centralisation of the approach.

Recent work from Sommerlade and Reid [7] adopts an
information theoretic model for tracking multiple targets in
a single PTZ camera. Importantly, their target model includes

an as yet unobserved target as well as several targets which
have been observed at least once, thus causing the scheduler
to devote resources to searching for new targets. Even more
recently, the approach has been extended to joint scheduling
of multiple camera on the basis of a mutual information
model [8]; this gives improved results over each camera
running a scheduler in isolation, but apparently at the cost
of requiring centralised processing.

Our approach differs radically from the previous work, as it
is target agnostic in that it does not focus specifically upon
the objects themselves. Instead it only considers low level
aspects of the video signal, specifically the occupancy of the
view as extracted by background subtraction, which reduces
its need for complicated target models. The proposed approach
instead models the expected level of occupancy in the possible
views and compares this to the measured occupancy levels.
This allows the approach to include extra information into the
scheduling of moving the camera view to include searching
for possible unobserved targets, similar to that used in [8].

III. SURPRISAL OF UNOBSERVED EVENTS

The self information or surprisal [9] measures the informa-
tion content of an outcome of a random variable. Our aim is
to schedule each pan-tilt-zoom (PTZ) camera to observe the
most interesting events, which we see as those that are the most
surprising [10]. This is equivalent to minimising the aggregate
surprisal of events that are observable, as they occur within a
field of view (FOV) of a camera, but are not actually observed,
as the camera was aimed at another FOV (or changing between
FOV5s) at the times of the event’s occurrence.

Our interest is in events representing the occupancy of
regions within each FOV. Each such region can be represented
by a binary random variable. The surprisal for an event where
a random variable X produces an outcome x is:

I(z) = —log(P(X = z)) ey

Both = 1 (occupied) and x = 0 (unoccupied) events are
surprising to some extent; the former typically more so, given
that P(X = 1) is typically much smaller than P(X = 0).

This formulation of surprise is much simpler than in [10],
which assists in efficiency of implementation. Note however
that it can be generalised to more sophisticated event models
(e.g. a Markov like model in which occupancy at time ¢ is
predicted from occupancy at time ¢ — 1) and also to aspects
of the signal beyond occupancy, such as colour. In this work
we have focussed upon occupancy to keep the computations
minimal.

Another difference from the work in [10] is that it is not
possible (by definition) to process all the possible (video)
data streams, but rather only that subset corresponding to
the currently active FOV (if any) in each camera at a given
time. The consequence is that the application of expecta-
tion maximisation to the measured signal, which is probably
straightforward (the expected value for the surprisal of events
generated by a random variable is simply the entropy of that



variable), is not helpful as the measured signal is only a subset
of the possible signal, as only one FOV per camera can be
viewed. Instead, the goal is to schedule measurements of the
available signal on the basis of predictions made from the
previously measured (partial) signal.

IV. SYSTEM MODEL

Like Qureshi and Terzopoulos [5] and Bagdanov et.al [6] we
evaluate the proposed approach via simulation. This provides
the considerable advantage of access to the ground truth
occupancy, and enables precise calculation (not estimation) of
the total surprisal of observable events in each frame.

The simulator is written in C++ for efficiency, and is
capable of simulating over 100,000 camera-frames per minute.
In concept it is similar to the simulator used to prototype
exclusion [11]. The authenticity of that simulator is borne
out by subsequent real implementations of that technique. In
this simulation approach, targets generate occupancy at their
2D position (on the ground plane). In real implementations
this 2D position is obtained by summarization of target blobs
to the mid-point of their lowest visible extent, a technique
which in practice is highly likely to generate positions that
are consistent between cameras viewing the same target. As
partial validation of the authenticity of the new simulator,
an exclusion estimator has been implemented within it; this
produces results that are similar to the results published for
exclusion [11].

The prominent aspects of the simulation system model are:

« A number of cameras (10 in the reported experiments) are
placed in pseudo-random positions within the simulated
world. Each is given some number (2, 3 or 4) of FOVs,
which are also generated psuedo-randomly, but with the
constrain that there is no overlap between FOVs of the
same camera.

« A number of targets (75 in the reported experiments) are
simulated within the scene at all times. As individual
targets exit the scene, new targets are added. Targets
follow random walks, but are more like to move per-
pendicular to and away from the border at which they
entered. Furthermore, a small number of paths are added
to the scene: targets are biased so as to move towards the
nearest path when distant, and parallel to the nearest path
when close.

o Each FOV is segmented into 12 x 9 regions, termed cells.
These regions are obtained by projecting a rectangular
grid onto the FOV, so each cell is a quadrilateral.

e The ground truth occupancy for each cell is determined
by 2D geometry (i.e. containment of targets within
quadrilateral cells).

The psuedo-random number generation is provided by a
number of Mersenne twister generators. Distinct generators
are used for targets and camera/FOV configurations, allowing
these to be varied independently.

The system maintains records of the expected occupancy for
each ground truth cell. To account for variations in behaviour
over time, these are time weighted values. A geometric series
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Fig. 1. Camera states

with a common ratio less than one is used to represent the
expected occupancy, which is taken to be the ratio between
the current value of the series and the maximum value. The
approach uses an empirically derived value of 0.007 for the
initial occupancy, which may distort initial results. A time
weighting factor (common ratio) of 0.999 is used in the
reported experiments, reducing its sensitivity to the initial
conditions after about 4,000 frames.

Each camera is scheduled independently, and follows the
state diagram shown in Figure 1. A camera remains in the
active state for some number of frames (50 in the experiments),
during which the signal from the active FOV is processed.
After this, it enters the strategy state, which selects the next
FOV, according to a strategy. A variety of strategies could be
implemented here to determine the next FOV to become active.
If the next FOV is the same as the current FOV it immediately
re-enters the active state and continues signal processing. If it
selects a different FOV, the camera enters the moving state for
a period of time, which is chosen as either one or five frames
depending upon the experiment. During this period the camera
is inactive, so no signal is processed. It then re-enters the active
state and resumes processing the signal from the new FOV.

Signal processing involves measuring the occupancy of
each cell in the active FOV, and may also include additional
processing of its occupancy data to support the scheduling
strategy (and potentially for other purposes). The measurement
is noisy, so the process of deriving measured occupancy from
true occupancy injects both false positives and false negatives.
For consistency with the true occupancy, the measured occu-
pancy for each cell is represented by a time weighted value.
Where an FOV is active, the measured value (either ‘0’ or ‘1°)
is injected into the series representing the weighted value. For
inactive FOVs, the modal value (‘0’) is always injected. All
measured occupancies are initialised to an empirically derived
global mean value; as described previously, the time weighted
nature of the representation means that the contamination
due to this initial value dwindles after the first few thousand
frames. The weighted values are accessible to additional
processing, including for scheduling strategies.

V. SCHEDULING STRATEGIES

In the simulator, it is possible to determine the optimal
active FOV at each frame. That is the FOV which contains
the largest aggregate surprisal according to the true occupancy



probabilities and the events occurring for that frame. This
leads to an optimal scheduling strategy, but one which is
unattainable, for the following reasons:

o It chooses the FOV to observe after observing all FOVs,
not just the active views.

« It assumes instantaneous switching between FOVs.

o It ignores the pragmatic constraint requiring the camera
to observe each FOV for a set of frames (50 in the
experiments), to support processing like background sub-
traction and provide human users with footage sequences
of useful length.

Nevertheless, this strategy provides a useful benchmark to
compare the performance of scheduling strategies.

Three obvious, and naive, scheduling strategies have been
implemented:

e Random — each time the strategy state is entered, it
randomly selects an FOV (each, including the current
FOV, has equal probability). Where the new FOV differs
from the current, the camera switches to it, where it is
the same, the camera maintains observation of the current
FOV.

e Round Robin — each time the strategy state is entered,
the camera switches to the next FOV in a sequential
progression.

o Constant — initially, an FOV is selected randomly (each
has equal probability); the cameras then maintains view-
ing of that selected FOVs throughout the simulation.

These strategies provide upper bound naive benchmarks which
any sophisticated scheduling strategy should out-perform if it
is to be considered useful.

VI. ENTROPY DRIVEN SCHEDULING STRATEGY

The major contribution of this work is a PTZ scheduling
strategy which selects the next FOV according to the in-
formation gain or Kullback-Leibler divergence (D1, (P||Q))
between the measured representation, P of the likelihood
of cell occupancy, (derived in Section IV), and a modelled
representation, () of the occupancy likelihood, derived as
follows.

o Similar to the measured and true occupancy represen-
tations, a time weighted representation is used for the
modelled occupancies.

o Each modelled occupancy is initialised to a value (in-
dividually) selected from a uniform random distribution
between 0 and twice the empirical mean occupancy used
to initialise the measured occupancy values. This ensures
that there is some (arbitrary) initial divergence between
measured and modelled occupancies. This arbitrary di-
vergence is corrected over time as meaningful values
are injected into the measured and modelled occupancy
representations.

« When an FOV is active, the modelled occupancy for a cell
is updated by injecting the same occupancy value (either
‘0’ or ‘1’) as was injected into the measured occupancy

for that cell. Over time, this will cause the measured and
modelled occupancies to converge.

o When an FOV is idle, a psuedo-random number between
0 and 1 is generated for each cell according to a uniform
distribution. The modelled occupancy for the cell is
injected with a ‘1’ value if the psuedo-random number
is less than the current modelled occupancy, and ‘0’
otherwise. Given that the measured occupancy for an idle
cell is always updated with ‘0’, this will tend to cause
the measured and modelled occupancies to diverge. It is
susceptible to both converging to 0; however this does
not appear to have been a problem in practice.

The Kullback-Leibler divergence (for some random vari-
able, X, representing the occupancy of a cell, and measured,
P, and modelled, (), distributions for that variable) is:

P(X =x)
Dgr(Pl|Q) = P(X =a)log | 5~—= )
= ’ (Q(X = x>)

Essentially, the entropy driven scheduling strategy selects to
either maintain the current FOV as active, or switch to one
of the other FOVs. This is based on the predicted effect each
strategy will have on the aggregate Dg . (P||Q) values for
all cells in all the FOVs of the camera. In the active FOV,
the Dk, (P||Q) values will be reduced, whereas in inactive
FOVs, the Dk, (P||Q) values will be increased. This case
includes the next active FOV during the time taken to switch
between FOVs, if the next FOV differs from the current one.

In choosing the FOV it is necessary to predict the effect
on both measured (P) and modelled (()) occupancy values,
from both observation (in the selected next active FOV) and
non-observation (in idle FOVs). The prediction process is
derived from the approach and used in updating the modelled
occupancy for idle FOVs. Prediction operates on copies of
the measured and modelled occupancies for the cells in the
FOVs of the camera. For predicted periods in which an FOV
will be idle, the occupancies are updated in the same way
as for cells in idle FOVs during operations, namely injecting
a ‘0’ into the measured occupancy and injecting either a
‘1’ or a ‘0’, according to the results of a simulation, into
the modelled occupancy. For predicted periods in which an
FOV will be active, the simulated value is injected into both
the modelled and measured occupancy. These operations are
applied repeatedly, once for each frame in the prediction
window. For our experiments, this is 50 frames plus either
one or five frames when switching to a different FOV.

Let D be the sum of the measured/modelled divergences for
all cells in all FOVs at the current time. For a given alternative,
A;, let D(A;) be the sum of the predicted divergences for all
cells in all FOVs at the end of the prediction window. The
strategy then selects the alternative A; for which:

IG; =D — D(4;) 3

is maximized. Note that the comparison between alterna-
tives that switch to a different FOV and the alternative of
maintaining observation of the current FOV is biased by
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Fig. 2. Results for four FOVs per camera and five frame switching delay

the shorter prediction window in the latter case. To obtain
good performance it has been necessary to introduce a bias
parameter to avoid the scheduler always opting to switch. Most
of the experimental results use a single (empirically selected)
parameter value; however it is also possible to obtain good
performance using an adaptive selection of this parameters.
This adaptive mechanism parameter can be adjusted to main-
tain at a certain level the ratio between switching to a different
active field and maintaining the currently active field of view.
This will make the camera more likely to maintain an active
field of view for longer periods, reducing the time that the
camera is inactive due to switching views.

VII. RESULTS AND ANALYSIS

Experiments were conducted for all combinations of the
following:

o The entropy, constant, random and round robin schedul-

ing strategies.

« FEither two, three or four FOVs per camera.

« FEither one or five frames to switch between FOVs.

This creates 24 cases, which were each simulated in experi-
ments using ten cameras over a period of 65536 frames.

The results presented in each case are for the means over 25
runs, producing a total of 600 experiments. These being all the
possible combinations of five different psuedo-random seed
values for the two psuedo-random number generators used for
camera/FOV layout and target activity respectively.

In addition to the above 600 experiments, a smaller number
of experiments where conducted with a much longer duration
and with an adaptive variant of the entropy scheduler.

Figure 2 shows results for the four strategies with four FOV's
and a five frame switching delay. The performance results
(left scale) are for aggregate unobserved surprisal relative to
the performance of the (unattainable) optimal schedule. The
optimal result achieves a value of 1, with poor results being
significantly higher than this. The entropy driven scheduler
is shown to significantly outperform the three naive sched-
ulers. The initialisation value selected for the true occupancy
representations contaminates the occupancy data and hence
the initial surprisal results. This effect clearly dwindles to be
negligible over time. The extent to which the true occupancy
data is derived from the actual occupancy (and not from the
initial value) as shown by the measurement veracity curve; it
approaches 1.0 (on the right scale) after about 4,000 frames.

Note that the random approach slightly outperforms the
round robin approach. This is because the latter switches
unconditionally after every active period, which is every 55
frames, losing five frames in which all FOVs are idle each
time. The random approach sometimes maintains observation
on the current FOV, and switching slightly less often loses less
time when all FOVs are idle. The performance of the constant
strategy has a high standard deviation (0.093) across the 25
runs, compared to 0.057 for the other naive strategies and 0.06
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for the entropy strategy. This variance is due to high sensitivity
to the initial FOV choice (which, for the constant strategy
is the only choice), and this also explains why the constant
strategy under-performs the other two naive strategies.

Recall that the entropy driven scheduler uses a manually
selected parameter to achieve the reported performance. This
process has also been evaluated using a simple adaptive
parameter, which maintains the switching to non-switching
ratio between the bounds of 0.1 and 0.01 in the reported
results. As shown in Figure 3, the adaptive approach (orange)
under-performs the hand tuned entropy approach (blue, as
previously) initially, but can outperform it over time. This may
be because the adaptive mechanism allows each camera to
have a slightly different parameter value, rather than a single
global constant. Further research is required to investigate this
adaptive approach more fully and produce more comprehen-
sive results.

It is hypothesised that the entropy driven scheduler achieves
better performance through the identification of structure in the
observed activity, and that this is reflected in the scheduling
of observations between FOVs. Structure is reflected in the
entropy of the distribution of observations between FOVs:
lower entropy corresponds to increased structure. The round
robin scheduler has minimal structure: it selects each FOV
with equal frequency. The degree to which the entropy driven
scheduler exhibits structure is revealed by the ratio of the
scheduling entropy to that of round robin. This ratio is shown
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for one and five frames switch delay and for two, three and
four FOVs per camera in Figure 4. These results support the
hypothesis that the entropy driven scheduler operates through
the identification of structure, particularly in the cases with
higher numbers of FOVs per camera, where structure is more
likely to be significant.

Figures 5 and 6 show results for a five frame switching
delay (as previously), but with three and two FOV's per camera
respectively. The salient points are:

o For all strategies, their performance is reported relative
to the optimal strategy degrades as the number of FOVs
per camera decreases. This is principally because the
absolute performance of the optimal strategy degrades as
the number of FOVs per camera increases, as it is less
likely that only one FOV at a given time contains events
with high surprisal value (i.e occupancy of one or more
cells).

e The poor performance of the constant strategy relative
to the other naive strategies for four FOVs per camera
disappears with lower numbers of FOVs. The distribution
of high surprisal events across the FOVs of a camera
is not uniform, and it is typically the case that one of
the FOVs has a disproportionately high proportion of
such events. With two FOVs per camera, the chance that
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this FOV is observed is 0.5, whereas with three FOVs it
is 0.33 and four FOVs, 0.25. This effect eliminates the
disadvantage for the constant strategy for less than four
FOVs per camera; in fact, constant outperforms the other
naive strategies, simply due to the fact that it does not
lose any observation time as it never switches between
FOVs.

Figures 7, 8 and 9 show results for a one frame switching
delay over each of the three choices of number of FOVs
per camera. The reduced switching delay does not affect the
constant strategy at all, as it never switches between FOVs.
The random and round robin strategies exhibit performance
that is almost indistinguishable: the reduced switching delay
virtually eliminates the advantage that random gained from
switching less often. The most prominent effect is that both
random and round robin exhibit improved performance. This
is due to the reduction in the fraction of time lost to switching
FOVs. Interestingly, whilst there is an improvement in the
performance of the entropy driven strategy, again due to
reduction in the time lost to switching, this improvement is
much smaller than for the random and round robin strategies.

All of the experiments reported previously run the simulator
for 65536 frames. The results shown in Figure 10 are means
of 25 longer runs of the entropy driven scheduler with 327680
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frames, for the two FOVs per camera and one frame switching
delay case. Also shown is the region within one standard
deviation of this mean. These results show the whilst the
rate of improvement decreases, the entropy driven approach
continues to improve, even after hundreds of thousands of
frames.

VIII. FURTHER WORK

The entropy driven scheduling approach described in this
papers leads naturally to a numbers of areas requiring further
investigation:

o Implementation in a real system is relatively straight-
forward, but evaluation is not, since it is difficult and
prohibitively expensive to obtain ground truth occupancy
for a sufficiently large number of frames to evaluate the
scheduler’s effectiveness. One approach is to compare
the behaviour of the real system scheduler to that in the
simulator, in terms of scheduling entropy and perhaps
other structural statistics. This would provide evidence
that the real implementation exhibits similar scheduling
behaviour to that in the simulator, but not that that
scheduling behaviour actually delivers improved perfor-
mance. Another approach is to measure everything: by
using a group of fixed cameras, one for each FOV, to



“simulate” each PTZ camera; then treat the measured
signal as the ground truth. The measured signal is in
this case complete, and so a reasonable approximation to
the ground truth, albeit subject to noise. Finally, another
approach is to evaluate performance at a higher level, for
example by using events detected as starting points for
tracking and then measuring the number of successful
instances of tracking.

o Adaptive variants of the entropy driven approach require
more investigation. This includes both more detailed
experimentation with the current adaptive approach, and
formulation of new adaptive approaches based on mean-
ingful user specified constraints. An example of the latter
is based upon the desired minimum and maximum times
that the camera should maintain continuous observation
of a single field of view.

o The simulation model permits the fields of view of
different cameras to overlap, but does not account for this
in any way. In particular, if an event is observed in one
camera but not in the other, it still counts as unobserved
(in the second camera). Instead some, discounting of
unobserved surprisal values should be applied where there
is overlap and the overlapping camera observes the event.
This does create coupling between the schedulers for
overlapping cameras, which has the potential to reduce
scalability, but this may be an acceptable trade-off.

« The simulation model prohibits overlap between different
fields-of-view in a given camera. A potential improve-
ment would be to consider the possible pan and tilt
(and perhaps zoom) positions to provide a very large
field of view, with only a region within this field-of-view
visible at any given time. This would greatly expand the
search space for an entropy driven strategy similar to that
described here, and in particular it would not be possible
to evaluate all possible alternatives at each scheduling
step, but it may be possible to adopt at least some aspects
of the current approach.

IX. CONCLUSION

This paper has presented an initial approach for scheduling
PTZ cameras on guard tours consisting of two or more fields
of view. Contrasting with previous work, which seeks to
track targets, the approach described here seeks to optimise
coverage of the area under surveillance. Specifically, the aim
is to minimise the surprisal (self-information) of events in
unobserved fields of view. An entropy driven scheduler based
on Kullback-Leibler divergence (information gain) has been
presented, and compared with three naive schedulers (random,
round robin and constant selection of one field of view).

The performance results reported demonstrate the efficacy
of the entropy driven scheduler:

i) It outperforms the naive schedulers by a significant

ii)

margin on all configurations.

It favours certain fields of view, with the performance
advantage indicating that this bias favours fields of view
which are more likely to reveal events with high surprisal
value.

Further contributions include:

iii) The scheduler is target agnostic and operates only on low

level properties of the video signal, specifically on oc-
cupancy data as determined by background subtraction.
This permits a highly efficient implementation, which is
independent of the number of targets in the area under
surveillance.

iv) Each camera is scheduled independently, thus the ap-

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

proach is scalable via distributed implementation, in-
cluding on smart cameras.
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